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Abstract

Investigating Natural Language Interactions in Communities

Kelvin Luu

Chair of the Supervisory Committee:

Associate Professor Noah A. Smith

Computer Science and Engineering

In this work, we investigate language use in communities. First, we study how authors of scientific texts

explain how their paper relates to another. We propose a new task, relationship explanation generation for

scientific texts, by using in-line citation text as a source of evidence. We introduce a new model, SCIGEN,

empowered by pretrained language models. We perform extensive human evaluation and discuss potential

shortcomings of our system’s generations.

Second, we describe work on investigating how NLP models degrade over time due to the dynamic nature

of most communities. We find evidence that static models, like SCIGEN, do not generalize temporally. Based

on this finding, we investigate how model performance deterioration over time differs across several tasks

and domains. We discover that models with temporally misaligned train and testing sets can suffer from large

amounts of performance degradation.

Finally, we show how elevating temporal characteristics in communities allows us to study particular

social phenomena. Namely, we explore the problem of quantifying persuasive skill over time. Using data

from an online debate forum, we construct a model of debater skill based on on the Elo ranking model and

incorporate historical lingusitic data. In order to estimate skill, we frame our prediction task to forecast the

outcome of a debate.

Though this work considers a wide range of NLP applications, it is unified by the idea that language



emerges from ever-changing communities of people engaging with each other. Our findings demonstrate how

the temporal dynamics and social underpinnings of language can inform NLP research and practice.
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Chapter 1

Introduction

Interactions between members of a community provide a rich source of data for studying various language use

patterns. In today’s world, many of these interactions are available as natural language text. For example, there

are 2.1 million daily users generating over 500 million tweets per day on Twitter; Wikipedia has discussions

over prior revisions spanning over a decade; and even peer-reviews on scientific works in submission are

publicly accessible on OpenReview. The abundant data, often signifying meaningful interactions, allows for

research into various social phenomena within a community.

Such data inspires much of Natural Language Processing (NLP) research and models. Computational

social scientists often apply NLP techniques on social media websites, such as Reddit or Twitter, to answer

social research questions. These online communities exhibit rich, naturally occurring interactions in text and

offer ways to study social phenomena such as controversy, toxicity, or persuasion at scale [Hessel and Lee,

2019; Xu et al., 2021; Tan et al., 2016].

Social interactions in text empower core NLP tasks and models as well. Popular benchmarks, like

Stanford Sentiment Treebank-2 or SQuAD, are built by members of online communities. The much the

successes of modern NLP can be attributed to pretrained language models, such as GPT3 [Brown et al.,

2020a]. These models have largely included vast amounts of social media text in their training data [Radford

et al., 2019a; Brown et al., 2020a]. Consequently, many of the NLP systems deployed, for either commercial

use or research, implicitly rely on social data.

Knowledge about social interactions in communities and NLP modeling and applications build on each
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other. Advances in one drive innovation in the other. As described previously, social interactions have led to

new NLP tasks and applications. More recently, researchers have leveraged social information in data for

applications in advice giving or reasoning about common social norms[Zellers et al., 2021; Emelin et al.,

2021; Jiang et al., 2021]. Gururangan et al. [2020a] showed that further pretraining is a simple, yet effective

way of adding knowledge about a desired domain to a model and improve performance.

Likewise, improvements to modeling have allowed researchers to answer different social questions in

communities. For example, pretrained language models such as BERT [Devlin et al., 2018] have allowed

researchers to characterize linguistic variation in communities [Lucy and Bamman, 2021] and find effective

strategies in science communication [August et al., 2020]. In this thesis, we suggest unique characteristics in

communities lead to new NLP applications and that improvements in modeling let us uncover new knolwedge

of the intricacies of a community.

One example of nuance in communities is how they evolve over time. New interests, changes in rules,

or members learning to communicate can all contribute to shifts in language use [Soni et al., 2021; Jhaver

et al., 2021; Danescu-Niculescu-Mizil et al., 2013]. In the latter part of this dissertation, we study temporal

effects in tasks and communities. We find that integrating awareness of these temporal shifts into our models

can not only give better predictive performance, but also allow scientists to tackle research questions about a

community.

1.1 Overview

First, we study how computer science researchers explain the relationship of one of their papers to another.

From these social interactions, we introduce a new task, relationship explanation generation for scientific

texts, and operationalize it using in-line citation text as a source of evidence. We build on a pretrained

language model, GPT2 [Radford et al., 2019a], to construct SCIGEN.

Due to limitations in input context windows of many pretrained language models, we cannot use entire

scientific texts as input. Instead, we seek to find a dense representation of a scientific document that provides

enough information to for SCIGEN to generate meaningful explanations. We experiment with various methods

of selecting full sentences to use as input for scientific documents. Since explanations of scientific texts are

highly technical, we perform a highly expert human evaluation and discuss potential future directions.
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We note, however, that SCIGEN models only a limited view of how the scientific community explains

other work for a certain time period. Indeed, we find evidence that static models like SCIGEN may suffer

from performance degradation over time. Consequently, we investigate how NLP models deteriorate over

time in Chapter 3. Prior work has broadly established that language use can change over time for various

reasons [Labov, 2011; Altmann et al., 2009; Eisenstein et al., 2014]. However, recent research that studied

language shift over time has mostly focused on a narrow set of domains or tasks [Röttger and Pierrehumbert,

2021; Cao et al., 2021; Zhang and Choi, 2021; Rijhwani and Preoţiuc-Pietro, 2020]. We consider phenomena

that are characteristic of particular domains, by investigating performance degradation of NLP models for a

variety of downstream tasks and text domains.

Finally, we use the temporal aspect of communities to measure persuasive skill acquisition over time.

By explicitly modeling temporal linguistic features of members of an online debate forum, we quantify

persuasive skill acquisition. In this project, we build a linguistic profile of a debater, or a summmary of

their language use. We use the linguistic profiles to build on the Elo ranking model, a system for ranking

participants in two-player games. Through our analysis, we are able to draw conclusions such as which types

of features are correlated with skill and how more skilled users become experts over time.

Throughout this work, we consider a wide range of NLP tasks. We show, in these tasks, that knowledge

about communities and modeling choices build on each other. We emphasize that social interactions play a

significant role in both cases. Ultimately, a significant portion of NLP tasks, even those not covered here,

may require processing natural language emerging from dynamic communities of people engaging with each

other. Our findings demonstrate how temporal dynamics and social underpinnings of language can inform

NLP research and practice.

.
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Chapter 2

Explaining Relationships Between Scientific

Texts

2.1 Introduction

The output of the world’s scientists doubles roughly every nine years [Bornmann and Mutz, 2015]. Conse-

quently, researchers must devote significant energy to quickly understand how a new piece of research fits

with a rapidly changing research landscape. One avenue of research to alleviate this burden is to study how

they convey their ideas in scientific text. Scientists often communicate their ideas and research to each other

through scientific papers. From these papers, we see which areas are popular with researchers [Jung and

Segev, 2013; Chakraborty et al., 2014] or which terms are likely to be adopted [Soni et al., 2021]. These

natural language interactions in the scientific community can be useful to inspire new applications and models

that help alleviate researcher burden.

Several lines of research have already studied interactions between researchers to reduce this scientist

workload. Citation recommendation systems suggest references to relevant published work [McNee et al.,

2002; Bhagavatula et al., 2018]. Intent classification systems help determine the type and importance of

a citation in a work [Valenzuela et al., 2015; Cohan et al., 2019]. Summarization systems aim to help

researchers more quickly understand the basic ideas in a piece of research [Cohan and Goharian, 2015;

Yasunaga et al., 2019]. We draw inspiration from these works as well as broader challenges like explaining
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“Blue builds on the 
method of Red …”

“Green collect 500k 
instances for training … ”

“Earlier techniques 
include Yellow …”

Input Documents

+

+

+

Explain Relationship

Figure 2.1: Given two scientific documents, the goal is to write the sentence describing the specific
relationship between them. For a given document (in blue above), the output will vary depending the content
of the other.

the connection between concurrent works or relating a new paper to those a reader is already familiar with.

Automatically describing inter-document relationships could decrease the time researchers devote to

literature review. For instance, explanations for a new paper can be personalized to a particular reader by

relating the new work to ones they have read before. Further, such technology could be incorporated into

writing assistance systems to help less experienced or non-native writers better articulate the connection

between their work and prior art. Additionally, users of citation recommendation systems can benefit from

natural language explanations of recommendation system choices.

In addition to the utility of this task to scientists, it presents several interesting technical challenges.

These include effectively representing the important information in a document, generating from a long-tailed

technical vocabulary, and expressing the variety of connections between related scientific papers. Figure 2.1

illustrates how the same document is described differently in relation to different documents.

In this chapter we use citing sentences, the interaction we focus on, to operationalize the problem

of generating natural language explanations of the relationships between two scientific papers. Authors,

when citing other work, oftentimes describe how their work relates to the cited work. To this end, we use

in-text citation sentences as a naturally occurring proxy explanations for how two documents relate to each

other. However, we generate such sentences from general representations of document content rather than

the specific in-text locations where these sentences occur, as this task formulation can better facilitate the

applications described above.
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We describe our contributions: we establish a new task of generating relationship explanations; introduce

a novel dataset for the task; release our SCIGEN model for describing document relationships; and provide an

extensive evaluation and analysis of machine generated technical text.

This chapter contains materials originally in Luu et al. [2021].

2.2 Related Work

The current work builds on recent research in scientific document understanding, including citation rec-

ommendation, intent categorization, and scientific document summarization. Citation recommendation

systems suggest related works given a document or a span of text [McNee et al., 2002; Nallapati et al., 2008;

Bhagavatula et al., 2018]. Recently, researchers have sought to categorize citations using various ontologies

of citation intents. Teufel et al. [2006] develop an annotation scheme and corresponding classification model

for citation functions. Valenzuela et al. [2015] seek to discern “highly influential” citations from others.

Jurgens et al. [2018] use six categories including “motivation,” “uses,” and “future work” among others.

Cohan et al. [2019] condense this ontology to just three: “background,” “method,” and “result comparison.”

Intent classification can identify relationships between documents; our relationship explanation task extends

this in two ways. First, data-driven freeform generation can express a wider array of relationships compared

to a manually-defined label set. Further, our task framework could be used to describe relationships between

works which do not actually cite each other, such as contemporaneous works. Unlike categorization tech-

niques, we require no task-specific annotated data as we supervise with citing sentences that are readily

available in scientific documents. In practice, citation classification is used to assist in suggesting relevant

works to researchers; our work complements this goal by providing rationales for the recommendation and

furthering progress toward explainable AI.

Our work is also connected to a long history of research on summarizing scientific documents [Luhn,

1958; Paice, 1980]. Work in this area has mostly used used abstracts or peer reviews as targets Cachola et al.

[2020]; Cohan et al. [2018]; Jaidka et al. [2017]. In particular, Pilault et al. [2020] show that using a simple

extractive summary as input for abstractive summarization of scholarly texts work well. Researchers have

also used citing sentences as part of the input for summarization, recognizing the explanatory power of these

texts [Nakov et al., 2004; Cohan and Goharian, 2017; Yasunaga et al., 2019]. Ours is the first work to focus
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on learning to express the specific relationship between two documents from such sentences.

The closest work to our own is Xing et al. [2020], who pilot a task of in-line citation generation. Their

goal is a model which can insert a citing sentence into a particular context within a document. Our work, on

the other hand, aims to learn from citing sentences how to describe general relationships between documents

independent of particular in-document contexts. While the Xing et al. [2020] method may facilitate writing

assistance, our task has applications in search and summarization. Because our task does not rely on a specific

location in a document where the citation will go, solutions can be used at scale to provide users with general

explanations of document relationships.

Our models rely heavily on recent advances in transfer learning in NLP. Large pretrained models such as

BERT [Devlin et al., 2018] and GPT2 [Radford et al., 2019b] have made strong advances on a number of

tasks [Wang et al., 2019]. It has also been shown that pretraining these models on domain-specific data further

improves results on domain-specific tasks [Beltagy et al., 2019; Lee et al., 2019]. In this work, we apply that

methodology by adding a pretraining phase on in-domain data before finetuning a GPT2 model toward the

explanation generation task. A key challenge when using pretrained language models for document-level

tasks is how to select document content to fit within the limited context window of the model, which is a

major focus of our work.

2.3 Problem Definition

We aim to generate an explanation: a natural language sentence which expresses how one document relates

to another. Explicit examples of such sentences are nontrivial to find in corpora, especially when annotation

for a highly technical task is expensive. To this end, we use in-text citations in a scientific document to prior

work as proxies for relationship explanations. We use these citing sentences as partial supervision for our

task, and refer to them as “explanations.”1

We distinguish one document as the principal document, from which we will draw explanations that

reference the cited document. Let t denote an explanation drawn from principal document S, and S′ denote

1Future work might seek to filter or systematically alter in-text citations to be more explanation-like, without otherwise changing
our approach.
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total average/doc.
documents 154K –
tokens 813M 5.3K
unique tokens 7.1M 1.3K
explanations 622K 4.0

Table 2.1: Dataset statistics, total and per document.

S without t. Then let

P (t | S′, C) (2.1)

be the probability of t given S′ and the cited document C. A good generation technique should maximize this

probability across a large number of ⟨t, S, C⟩ triples, so that at inference time the model is able to generate a

sentence t∗ which accurately describes the relationship between new documents Ŝ and Ĉ.

Optimizing Equation 2.1 is made easier by modern representation learning. Pretrained neural language

models like GPT2 have shown strong performance when generating sentences conditioned on a context.

However, existing implementations of GPT2 limit the context window to 512 or 1024 tokens, far smaller

than scientific documents. In this work, we explore ways to represent the documents’ content for use with

language models.

Data We use English-language computer science articles and annotation from the S2ORC dataset [Lo et al.,

2020a]. S2ORC is a large citation graph which includes full texts of 8.1 million scientific documents. We use

154K connected computer science articles, from which we extract 622K explanations with a single reference

that link back to other documents in our corpus. We omit any sentences that cite more than one reference. We

hold 5000 sentences for each of the validation and test sets. Detailed statistics can be found in Table 2.1.

Evaluation The most appropriate evaluation metric for this and many text generation tasks is human

judgment by potential users of the system. Evaluating explanations of the relationships between scientific

documents requires human judges with scientific expertise whose time and effort can be costly. While

collecting human judgments in technical domains is relatively rare, we believe it to be an important step in

evaluating our systems for this task. Thus, we conduct thorough human evaluations and analyses with expert

judges. We make use of both larger scale expert evaluations yielding hundreds of judgements as well as
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smaller scale, deeper evaluations where we can effect a higher degree of quality control over fewer datapoints.

Further, we make use of intermediate human evaluations in the development of our models, and supplement

these evaluations with automatic metrics — BLEU [Papineni et al., 2002] and ROUGE [Lin, 2004] that are

established in other generation tasks.

2.4 Models

We develop several models for explaining document relationships. Following current work in neural text

generation, we finetune the predictions of a large pretrained language model to our task (§ 2.4.1). In order

to bring the language model into the scientific text domain, we do additional language model pretraining

over full scientific texts. We also investigate approximate nearest neighbor methods to retrieve plausible

human-authored explanations from the training data as a baseline (§ 2.4.2).

2.4.1 Neural Text Generation

Recent work has shown that finetuning large pretrained language models to text generation tasks yields strong

results [Zellers et al., 2019]. To this end, we construct SCIGEN, a model based on GPT2 [Radford et al.,

2019b], a transformer model trained on 40GB of internet text with a left-to-right language modeling objective

[Vaswani et al., 2017]. We do so by finetuning the predictions of the language model to generate explanations

using different expressions of the principal and cited document as context.

To finetune GPT2 architectures for text generation, it is typical to concatenate the conditioning context

X = x1 . . . xn and target sentence Y = y1 . . . ym with a special separator token ξy. To adapt this technique

to our task, we construct the conditioning context X from the principal and cited documents and use the

explanation as Y . We take j tokens from principal document s1, . . . , sj along with k tokens from the cited

document c1, . . . , ck (which tokens to draw from the two documents is an independent variable that we explore

experimentally). We then condition the generation of explanation Y on X = s1, . . . , sj , ξ
x, c1, . . . , ck, where

ξx is a token used to indicate the end of the principal document. SCIGEN is trained to predict the explanation

one token at a time as described above.

At inference time, the model is provided with an unseen principal/cited document pair. An explanation of

their relationship is generated one token at a time using nucleus sampling Holtzman et al. [2020]. At timestep
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Figure 2.2: Overview of the construction of SCIGEN. We take the pretrained GPT2 and continue pretraining
on scientific texts. We then finetune using data in Table 2.1.

t, output token ŷt is sampled from the top 90% of the distribution P (ŷt | X, ξy, ŷ1, . . . , ŷt−1) (renormalized).

The selected ŷt is used to condition the prediction of subsequent tokens.

Context The primary question we investigate with the SCIGEN model is what kind of input is best for

describing the relationship between the principal and cited documents accurately and informatively. Since

models based on GPT2 have a small context window relative to the length of scientific documents, we

investigate the use of abstracts, introductions, or non-citing sentences sampled from throughout the document

as conditioning context. The effectiveness and description of these approaches is described in § 2.4.3.

Language Model Pretraining Prior work has shown that pretraining on in-domain data improves the

performance of large language models on domain-specific tasks [Beltagy et al., 2019; Gururangan et al.,

2020a]. Inspired by this, we continue pretraining the GPT2 model in the science domain to produce SCIGPT2

, which we use as the underlying language model for SCIGEN described above. SCIGPT2 starts from the

standard pretrained GPT2-base model and is trained for an additional 75k gradient updates at a batch size

of 64 (effectively a single epoch over 4.8 million abstracts and body paragraphs) with a language modeling

objective. Figure 2.2 illustrates the process.

We observed significant improvements in the quality of SCIGEN outputs after replacing the underlying

GPT2 language model with the domain-specific SCIGPT2 model. We saw a perplexity improvement in a

held-out set and, in informal inspections, qualitative improvements as well.

When using pretrained language models, text from task-specific test data cannot be guaranteed to be

absent from the large task-independent corpora upon which these models are trained, which may improve

model performance compared to models without this exposure. For the experiments described in this work,
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we train a version of SCIGPT2 only on documents appearing in the training data, so that the principal

documents and target sentences in the test data are guaranteed to be unseen by the language model. We

provide this and a full-corpus version of SCIGPT2 as resources for future research.2

2.4.2 Retrieval with Approximate Nearest Neighbors

While neural text generation techniques have advanced significantly in recent years, their outputs are still

inferior to human authored texts. For some tasks, it is better to retrieve a relevant human-authored text than to

generate novel text automatically [Fan et al., 2018]. Is this also the case when generating explanations?

To answer this question, we use an information retrieval (IR) baseline. We adapt an approximate nearest

neighbor search algorithm to find similar pairs of documents. The basic search procedure is as follows:

Given a test instance input (S,C) for principal S and cited document C, we find the set NC , the nearest

neighbors to C in the training data. For each document NC from NC , let NS be the set of documents that

cite NC . This means that each NS ∈ NS contains at least one citing sentence t′ which cites NC . We use the

t′ associated with the (NS , NC) pair from the training set which is closest to (S,C) as the explanation of

their relationships, which we describe in more detail below.

We measure the closeness of two pairs of documents using the cosine distances between vector represen-

tations of their abstracts. The abstract of each document is encoded as a single dense vector by averaging the

contextualized embeddings provided by the SciBERT model of Beltagy et al. [2019] and normalizing. The

distance between (S,C) and neighbors (NS , NC) is computed as

α cos(S,NS) + β cos(C,NC), (2.2)

where α and β control the relative contribution of the two document similarities. We explore setting both α

and β to 1, or tuning them to optimize BLEU on the validation data using MERT [Och, 2003].

2.4.3 Representing Documents with Sentence Selection

Methods for the related task of citation recommendation have made use of abstracts, which perhaps act as

sufficient summaries of document content. Building on this, we represent the principal and cited documents

2https://github.com/Kel-Lu/SciGen
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with the first 450 tokens of either their abstracts, introductions, or sentences randomly sampled from

throughout the full document.3 In this section, we answer two questions: 1) do neural generation models

with sentence-based context outperform the IR baseline and 2) does the type of sentence-based context

(abstract, introduction, sampled) matter? We answer these questions by performing both automatic and

human evaluations.

2.4.4 Representing Documents with Information Extracted Contexts

We found in our work that generations using selected sentences as context can miss important phrases such as

unique model or dataset names and other lower-frequency terms. We investigated using IE-based contexts,

such as lists of salient words and phrases, as dense representations for our task. We report results and

examples in Table 2.2 but omit details for space reasons. Please see our work, Luu et al. [2021] for more

details.

2.5 Evaluation

We perform both automatic and human evaluation for our task. Automated metrics, such as BLEU or

ROUGE are popular in generation tasks with reference texts since they are less expensive than human metrics

Papineni et al. [2002]; Lin [2004]. However, since these metrics often rely on select texts to compare to, these

automated metrics often do not cover the space of all acceptable answers. To this end, we supplement our

automatic evaluation with an extensive human evaluation by experts in the NLP research community.

2.5.1 Automatic Evaluation

We compare the SCIGEN and IR systems using BLEU [Papineni et al., 2002] and ROUGE (specifically L;

Lin, 2004). The “Sentence-based” rows of Table 2.2 show the test set performance of the IR system and the

best SCIGEN models when provided with the different sentence-based input context combinations.

We assess statistical significance as well by bootstrapping with 1000 samples in each of 100 iterations. We

find that context does make a difference for SCIGEN, and that a slight but statistically significant performance

3We exclude any sentence with a citation from being sampled in all conditions. This context type is also only used for the cited
document and not the principal document.
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Method Context BLEU Rouge-1 Rouge-2 Rouge-L

Sentence-Based

SCIGEN

principal abs × cited abs 9.82 10.7 0.6 8.4
principal abs × cited intro 9.39 10.7 0.6 8.4
principal abs × cited sample 9.60 10.7 0.7 8.5
principal intro × cited abs 9.92 11.1 1.0 8.7
principal intro × cited intro 9.80 11.1 1.1 8.8
principal intro × cited sampled 9.81 10.9 0.9 8.7

retrieval
principal abs × cited abs 9.93 14.2 0.7 9.7

+ MERT (BLEU) 10.23 14.3 0.7 9.8
no principal × cited abs 9.79 14.1 0.6 9.6

IE-based
SCIGEN

principal intro × cited tfidf 13.17 15.0 1.3 12.0
principal abs × cited entities 13.10 14.3 0.8 11.4
principal intro × cited entities 13.41 14.7 1.4 11.8

+Ranking
principal intro × cited tfidf 13.50 15.5 1.6 12.3
principal abs × cited entities 13.28 14.7 1.0 11.6
principal intro × cited entities 13.16 15.0 1.3 11.8

Table 2.2: Automatic evaluation of generated texts for all of our systems. Our best models, the IE-based
ones, are omitted for space reasons. Please see our work Luu et al. [2021] for details.

Specific Correct S&C agr
SCIGEN 72.3 64.0 55.0 70.5
IR 74.8 46.3 40.0 77.5
Gold 81.4 72.1 68.0 83.8
agreement 69.8 71.4 63.1

Table 2.3: Human evaluation of SCIGEN (intro × abs) and IR (abs × abs) systems compared with gold
explanations in percent. S&C represents those that were both specific and correct. All differences significant
at p < 0.01 except SCIGEN vs. IR specific.

improvement comes from using the introduction of the principal document rather than the abstract.4 We do

not, however, find enough evidence to reject the null hypothesis that any particular representation of the cited

document’s content (abstract, intro, or random sample) yields any significant difference in performance.

We find that using the introduction of the principal document paired with the abstract of the cited document

performs best, and so we select these for human evaluation. The IR systems perform well, obtaining slightly

better scores in some settings. We choose the MERT-optimized version for human evaluation.

4p < 0.01 after Bonferroni correction.
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2.5.2 Human Evaluation

We conduct a human evaluation to determine, given a particular pair of principal and cited abstracts, how

correct and specific the generated explanation of their relationship is. By “correct” we mean: does the

explanation correctly express the factual relationship between the principal and cited documents? Because

generic explanations such as “This work extends the ideas of Chomsky and Halle (1968)”, while possibly

factual, do not express a detailed understanding of the documents’ relationship, we ask judges whether the

explanation describes a specific relationship between the two works. An explanation can be specific even it is

incorrect.

We compare the principal intro × cited abs SCIGEN setting against the tuned IR system. For calibration,

we also elicit judgments for the gold explanations extracted from principal documents along with the correct

principal and cited abstracts. In all three cases, we ensure that the principal document appeared in the ACL

anthology to ensure annotator expertise.

To ensure no annotator sees the output of more than one system on each datapoint, we randomly select 50

datapoints for each system (principal intro × cited abs, IR, and Gold explanations) from the subset of our

test data whose principal documents appear in the ACL anthology. Each judge is given 15 datapoints for each

of the specificity and correctness qualities. Judges are shown a table of datapoints and asked to mark whether

each meets (“Yes") or fails to meet (“No") the condition. Judges are permitted to label “?" or skip examples

they feel uncertain about or unqualified to judge, which we ignore. In total we solicit 37 NLP researchers and

collect over 800 judgments, with over 100 for each system/quality dimension combination.

Table 2.3 shows the percentage of “yes” judgments versus the total of “yes” and “no” judgements for

each system/quality combination, along with pairwise agreement rates. Gold texts received the highest scores

for all dimensions of text quality from the evaluators as well as the highest agreement rate. We can also see

that IR systems tend to produce incorrect explanations more often than not.

The SCIGEN system performs quite well in this analysis, with a majority of outputs deemed correct. We

observe a larger difference in specificity between SCIGEN and gold texts, indicating that SCIGEN, like many

neural text generation systems, often generates vague and generic sentences. These generations tended to be

vacuous such as “(CITED) This work is an extension of the paper.” Specificity is key for future downstream

applications such as automated literature review and will need to be improved for those tasks.
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Correct

random cited 45.8
random principal 46.9
both random 17.6

Table 2.4: Correctness judgements of incorrect citing sentences (percentages).

Validity of Human Judgments

To test the validity of the human judgments in Section 2.5.2, we conduct an additional human evaluation

of gold explanations paired with different kinds of mismatched inputs: (1) the correct principal document

and a random cited document, (2) the correct cited document but a random principal document (3) random

principal and cited documents selected from ACL anthology. Conditions 1 and 2 allow us to see whether

human judges accept sentences which align with only one or the other of the input documents; condition

3 provides a lower bound. We collect 107 human evaluations of correctness across these conditions, again

allowing annotators to skip datapoints they are unsure of. The results, shown in Table 2.4, indicate that human

judges will sometimes accept a explanationas long as one of the principal or cited documents is correct, but

at a lower rate than seen in Table 2.3 when both documents are correct. We note that both papers in the

mismatched cases are drawn from the ACL anthology, meaning there is some amount of topical coherence

in their pairing. There is no indication from this experiment that either the principal or cited document is

a stronger influence on a judge’s correctness decision, although a larger sample size might make a clear

determination.

2.5.3 Discussion and Limitations

Error Analysis Example system outputs for selected test datapoints are shown in Table 2.5. The first

example illustrates a case where the model identifies a correct relationship between the two documents. In

this instance, they both use the pinyin representation for Chinese characters in their transliteration models.

Output 2 demonstrates a failure of the explanation generation system. The principal document deals with

the topic of discourse relations, the automatic identification of which is a long-standing machine learning

task. However, this particular document is an analysis paper, and does not involve any training.
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Principal: A Syllable-based Name Transliteration System
1 Cited: A Joint Source-Channel Model for Machine Transliteration

SCIGEN: Following Cited , Chinese characters are considered as Pinyin sequence.

Principal: Recovering discourse relations: Varying influence of discourse adverbials
2 Cited: The Benefits of a Model of Annotation

SCIGEN: The two text collections provided by Cited were used for training, and the other two text collections
were used for evaluation.

Principal: Coreference Resolution for Swedish and German using Distant Supervision
3 Cited: Collective Cross-Document Relation Extraction Without Labelled Data

SCIGEN: It is one of the most widely used distant supervision techniques and is inspired by techniques
proposed by Cited.

Principal: Neural Text Generation in Stories Using Entity Representations as Context
4 Cited: Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer

SCIGEN: The authors of Cited proposed a model that combines neural generation with user interaction to
create an object-centric reading experience.

Table 2.5: Example explanations. The given texts are the document titles and the SCIGEN outputs. In the
last example, the two documents do not cite each other.

Output 3 is an example of a “Not specific (but not incorrect)” case. Here again the explanation generated

by SCIGEN is topical, dealing with the concept of “distant supervision” that is key to both input documents.

However, this sentence fails to capture the specific use that the principal makes of the research described in

cited document.

It is notable that the SCIGEN model usually outputs syntactically correct and topical explanations, even

given the difficulty of the vocabulary in this domain. This is consistent with many recent findings using

domain-specific language models.

Low Probability Examples The final example, output 4, showcases potential for our system to explain

concurrent work. The generated text summarizes the cited and implies that principal will build on that work.

However, selected papers are both concurrent generation papers published in the same venue and do not cite

each other. This appears to be a weakness in using citation sentences as proxies for relationship explanations.

Citations of contemporaneous work occur less frequently, so these types of sentences appear less often in

training. Similarly, relationship explanations between papers with more distant connections (e.g., “multi-hop”

in the citation graph) are missing in our training data.

In addition to missing some relationships, not all citation sentences are useful as explanations. As pointed

out by other work, citation sentences can often be simple summaries of the cited work Qazvinian and Radev
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Figure 2.3: The number of times "Transformers" appear in the titles of papers published at the Assocation of
Computational Lingustics, an NLP conference. We note that there is an increase of transformer papers in
2019, after their introduction.

[2008]; Cohan and Goharian [2017]. Alternatively, they can be too specific to be useful, as seen in Output 1,

where a higher-level summary might be more useful. Future work could focus on curating better training sets

for our task.

Modeling Only a Snapshot Like for many other models, we train SCIGEN on a singular dataset. Conse-

quently, SCIGEN only captures a snapshot of the scientific community for a specific time period. However,

communities in practice are not static; researchers typically focus on areas that are new or interesting to

the community at large. For example, consider transformer models in the NLP community. As we see in

Figure 2.3, we see a large increase in published papers on transformer models after their introduction. In

Chapter 4, we will find other ways to natural language interactions that are sensitive to time.

Moreover, snapshot models of communities do seem to degrade. To demonstrate this deterioration, we

take SciGPT2 and evaluate it for perplexity on documents from 2017 and 2021. As seen in Figure 2.4, the

SCIGPT2 model performs notably worse in language modeling perplexity when tested on articles from 2021,

two years after SCIGPT2 was trained. We will later discuss in Chapter 3 how this phenomenon extends to

downstream tasks and is not unique to the research community.
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Figure 2.4: Language Modeling perplexity of SCIGPT2 over scientific documents from 2017-2021. Lower
is better. The red bars indicate the papers that came out after SCIGPT2 was trained. These documents are
out of distribution and SCIGPT2 performs worse on these articles.

2.6 Summary

In this chapter, we described a task of explaining the relationship between two scientific texts and its

connections to facilitating researcher productivity. We employed a large, publicly available dataset of

scientific documents to train a domain-adapted left-to-right language model for use in text generation

applications and beyond. We explored a collection of techniques for representing document content including

using abstracts, introductions, and sampled sentences across the entire document. We conducted thorough

human and automatic evaluations to determine the relative strengths of each representation for expressing

document relationships in natural language text.
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Chapter 3

Time Waits for No One! Analysis and

Challenges of Temporal Misalignment

3.1 Introduction

In Chapter 2, we modeled how authors of scientific texts explain their work in relation to other, prior work.

Our model, SCIGEN, was essentially a snapshot of the scientific community at a particular time period.

However, active communities are generally not static, as implied in the discussion section of the previous

chapter (Section 2.5.3). Prior work has widely attested that language changes over time in various ways

[Labov, 2011; Altmann et al., 2009; Eisenstein et al., 2014]; these changes have also been studied in the

context of language shift in communities [Stewart and Eisenstein, 2018b; Soni et al., 2021]. We now focus

on general language change over a variety of communities, domains, and tasks. Specifically, we focus on

how these changes affect the long-term performance of NLP systems built from text corpora.

This chapter focuses on temporal misalignment, i.e., where training and evaluation datasets are drawn

from different periods of time. In today’s pretraining-finetuning paradigm, this misalignment can affect a

pretrained language model—a situation that has received recent attention [Jaidka et al., 2018; Lazaridou

et al., 2021; Peters et al., 2018; Raffel et al., 2020; Röttger and Pierrehumbert, 2021]—or the finetuned task

model, or both. However, these works tend to focus on a narrow set of domains or tasks. Prior work in

computational social science has shown that communities have distinctive characteristics and show great
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Figure 3.1: Normalized activity over the R/NBA and R/NFL subreddits. We note that the peaks for the two
occur at different points of time: NBA peaks in June and July where playoffs and the beginning of the
offseason occur while NFL peaks in December and January, near the end of the season.

amounts of linguistic variation [Lucy and Bamman, 2021; Zhang et al., 2017b]. For example, Figure 3.1

shows that even two sports-related communities on social media website reddit.com have peaks at different

points in the year. We likewise suspect that the effects of temporal misalignment will vary depending on the

community or domain of the task’s text, the nature of that task or application, and the specific time periods.

We focus primarily on measuring the extent of temporal misalignment on task performance. We consider

eight tasks, each with datasets that span at least five years (§3.4), ranging from summarization to entity

typing, a subproblem of entity recognition [Borthwick, 1999]. Notably, these task datasets span four different

domains: social media, scientific articles, news, and reviews. We introduce an easily interpretable metric that

summarizes the rate at which task performance degrades as function of time.

Our research questions are:

• (Q1) how does temporal misalignment affect downstream tasks over time?

• (Q2) how does sensitivity to temporal misalignment vary with text domain and task?

• (Q3) how does temporal misalignment affect language models across domains and spans of time?
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• (Q4) how effective is temporal adaptation, or additional pretraining on a target year, in mitigating

temporal misalignment?

We find that temporal misalignment affects both language model generalization and task performance.

We find considerable variation in degradation across text domains (§3.5.2) and tasks (§3.5.1). Over five years,

classifiers’ F1 score can deteriorate as much as 40 points (political affiliation in Twitter) or as little as 1 point

(Yelp review ratings). Two distinct tasks defined on the same domain can show different levels of degradation

over time.

We explore domain adaptation of a language model, using temporally selected (unannotated) data, as a

way to curtail temporal misalignment [Röttger and Pierrehumbert, 2021]. We find that this does not offer

much benefit, especially relative to performance that can be achieved by finetuning on temporally suitable

data (i.e., from the same time period as the test data). We conclude that temporal adaptation should not be

seen as a substitute for finding temporally aligned labeled data.

The evidence and benchmarks we offer motivate careful attention to temporal misalignment in many

applications of NLP models, and further research on solutions to this problem. This chapter includes content

originally published in Luu et al. [2022].

3.2 Methodology Overview

We begin by defining the scope of our study.

3.2.1 Learning Pipeline

We consider a process for building an NLP model that is in widespread use by the research community,

illustrated in Fig. 3.2. First, a (neural network) language model (LM) is pretrained on a large text collection

that is not necessarily selected for topical or temporal proximity to the text of the target application (our

focus is on GPT-2; Brown et al., 2020b). Second, the LM is optionally adapted by continued training on a

collection strategically curated for closer proximity to the target [Beltagy et al., 2019]; this stage is often

referred to as domain-adaptive pretraining (DAPT; Gururangan et al., 2020b). Finally, the model is finetuned

to minimize a task-specific loss, using labeled data representative of what the model is expected to be exposed

to in testing or deployment.
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Figure 3.2: A typical modeling pipeline in NLP.

We study two ways in which temporal misalignment might affect the pipeline’s performance as well as

straightforward ways to mitigate them.

Task Shift and Temporal Finetuning The relationship between text inputs and target outputs may change

over time. To the extent that this occurs, annotated datasets used to train NLP systems in the finetuning stage

will become stale over time. Due to this temporal misalignment, performance will degrade after deployment,

or any in evaluations that use test data temporally distant from the training data. We seek to quantify this

degradation across a range of text domains and tasks.

Language Shift and Temporal Domain Adaptation Changes in language use can cause a pretrained LM,

which commonly serves as the backbone for most modern NLP models, to become stale over time [Lazaridou

et al., 2021], regardless of the end task. Lazaridou et al. [2021] explored temporal adaptation, continuing LM

training on new text data. This is essentially the same procedure as DAPT, where the data is selected by time

period. Their work focused on the LM alone, not downstream tasks; we consider both here.

Röttger and Pierrehumbert [2021], the closest to our work, studied temporal adaptation in conjunction to

finetuning for a classification task over Reddit data. They conclude that temporal adaptation does not help

any more than normal DAPT. We corroborate this work and extend it by studying a wider variety of tasks

over a longer span of time periods and thus are better able to draw generalizations from our results.

We believe that the two kinds of shift—task shift and language shift—are difficult to disentangle, and we

do not attempt to do so in this work. Instead, we aim to quantify the effect of temporal misalignment on a

range of NLP tasks, as well as the benefits of these two strategies.
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3.3 Evaluation Methodology

Our experiments are designed to measure the effect of temporal misalignment on task performance. To do

so, for each task, we fix a test set within a given time period, Ttest . We vary the time period of the training

data, allowing us to interpret differences in performance as a kind of “regret” relative to the performance of a

model trained on data temporally aligned with Ttest .1 We consider multiple different test periods for each

task. We also seek to control the effect of training dataset size. We partition training data into time periods of

roughly the same size and always train on a single partition, keeping the training set size of each time period

constant within each task. We expect that performance could be improved by accumulating training data

across multiple time periods, but that would make it more difficult to achieve our research goal of quantifying

the effect of temporal misalignment on performance.

3.3.1 Quantifying Temporal Degradation

Understanding temporal misalignment requires evaluating a model’s performance across data with a range of

different timestamps, which makes it difficult to compare various models in terms of their misalignment. We

define a metric for temporal degradation (TD) which summarizes the expected speed of model degradation

due to temporal misalignment on a task as a single value. In high-level terms, the TD score measures the

average rate of performance deterioration (of perplexity, F1, or Rouge-L) for each timestep of difference

between that the train and evaluation sets. Higher TD scores imply greater levels of performance deterioration

due to misalignment.

Let t be the time period of the training data and t′ the time period of the evaluation data. We aim to

summarize the general effect of temporal misalignment (the difference between t and t′) on task performance,

in an interpretable way that is comparable across tasks.

Let St′�t indicate the performance a model trained on timestep t′ data and evaluated on timestep t. We

define D(t′ � t) as:

D(t′ � t) = − (St′�t − St�t)× sign(t′ − t).

In other words, D(t′ � t) is a modified difference in performance between a aligned and misaligned

1This setup avoids a confound of varying test set difficulty that we would encounter if we fixed the model and compared its
performance across test datasets from different time periods.
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Figure 3.3: Three example calculations of the TD score (left from POLIAFF and the center and right from
YELPCLS). The annotated numbers are the raw evaluation scores St′→t and the plotted markers represent the
modified differences D(t′ → t) discussed in Section 3.3.1. For a particular plot, the red line is the line of
best fit and its slope is the TD(t) score for evaluation timestep t. The final TD score is averaged between all
evaluation timesteps for the particular task.

models. The modification2 ensures that, as performance deteriorates, D increases, regardless of the direction

of time between t and t′.

We find a line of best fit for D(t′ � t) for all t′ using least-squares regression. The slope of this line is

TD(t), the TD score for evaluation time period t. Formally, the temporal degradation (TD) score for a fixed

evaluation timestamp t for models trained on a set of timestamps T is defined as:

TD(T � t) =

∣∣∣∣∣
∑

t∈T
(
D(t′ � t)− D̄

)
(t− t̄)∑

t∈T (t− t̄)2

∣∣∣∣∣ ,
where t̄ = avgt∈T t

′ and D̄ = avgt∈T D(t′ � t). This metric is the slope of a line fitting the the performance

change of models trained on a variety of timestamps, when evaluated on a fixed timestamp. It can be

interpreted as the average rate of performance deterioration per time period.

2Without the modification, a task with degradation would have have positive performance gaps both t′ > t and t′ > t; the
function would not be monotone and the rate of change would be harder to approximate. The modification yields a simpler visual
understanding of the deviations over time.
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Domain Task Time Range Size Example

Twitter

political
affiliation

classification
2015-2019 120k

Input: History will note that Trump didn’t merely fiddle while the planet
burned but tried to throw the Arctic National W... Output: Democrat
(vs Republican)

entity type
classification 2014-2019 8k

Input: entity: Finola, tweet: Two 64-year olds enjoying their first
birthday together in 40+ years. My twin sister, Finola, and I. Output:
Person

Science

mention
type

classification
1980-2016 8k

Input: mention: deep Long Short-Term Memory (LSTM) subnetwork,
abstract: In this paper, we study the problem of online action detection
from the streaming skeleton data .... by leveraging the merits of the deep
Long Short-Term Memory (LSTM) subnetwork, the proposed model ...
Output: Method

venue
classification 2009-2020 16k

Input: Rank K Binary Matrix Factorization (BMF) approximates a
binary matrix by the product of two binary matrices of lower rank, K...
Output: AAAI (vs ICML)

News

media
frame

classification
2009-2016 20k

Input: You think you have heard the worst horror a gun in the wrong
hands can do, and then this.You think there could not have been anywhere
more tragic for it to happen... Output: Gun Control (15 possible frames)

publisher
classification 2009-2016 67k

Input: A Muslim woman said Sunday that her viral article explaining
why she voted for Donald Trump has angered her liberal pals as well as
other Muslims. Output: FoxNews (vs NYTimes or WaPost)

summarization 2009-2016 330k

Input: The Consumer Financial Protection Bureau is demanding PayPal
return $15 million to consumers and pay a $10 million fine for ... Output:
The CFPB alleges many customers unwittingly signed up for PayPal
Credit

Food Reviews
review rating
classification 2013-2019 126k

Input: What a beautiful store and amazing experience! Not only the
atmosphere, but the people... Output: 4 (out of 5)

Table 3.1: The tasks from four domains studied in this paper, with examples. See Section 3.4 for more
details.

Fig. 3.3 shows three examples of TD scores from our experiments3. These illustrate cases with and

without temporal sensitivity. In practice, most examples with deterioration showed a linear trend and thus the

rate of degradation was suitable to be approximated by a line. The final TD score is the average of the TD(t)

across all evaluation time periods t

3.4 Domains, Tasks, and Datasets

We describe the eight tasks and four domains used for this study. Three (out of eight) of the tasks are newly

defined in this work, and all tasks required nontrivial postprocessing. We provide examples and detailed

statistics in Table 3.1.

3POLIAFF (the first) and YELPCLS (the latter two); more information on these tasks can be found in Section 3.4
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Domain 1: Twitter Social media platforms like Twitter have been mined to study aspects of language

change over time, such as the introduction or diffusion of new words [Eisenstein et al., 2014; Tamburrini et al.,

2015; Wang and Goutte, 2017]. We collect unlabeled data for domain adaptation by extracting a random

selection of 12M tweets, spread semi-uniformly from 2015 till 2020.4 We experiment with two tasks on

Twitter data:

Political affiliation classification (POLIAFF) We collect English tweets dated between 2015 and 2020

from U.S. politicians with a political affiliation (Republican or Democrat). We omit any politician who

changed parties over this time period or identified as independent. We consider the downstream task of

detecting political affiliations, i.e., given a text of a single tweet we predict the political alignment of its

author at the time of the tweet. This task can be useful for studies that involve an understanding of ideologies

conveyed in text [Lin et al., 2008; Iyyer et al., 2014].

Named entity type classification (TWIERC) We use the Twitter NER dataset from Rijhwani and Preoţiuc-

Pietro [2020]. The dataset contains tweets dated from 2014 to 2019, each annotated with the mentions of

named entities and their types (Person, Organization, or Location). We consider the task of typing a given

mention, which is a subproblem of named entity recognition.

Domain 2: Scientific Articles Scientific research produces vast amounts of text with great potential for

language technologies [Wadden et al., 2020; Lo et al., 2020b]; it is expected to show a great deal of variation

over time as ideas and terminology evolve. For adaptation to this domain, we collect unlabeled data from

science documents available in Semantic Scholar’s corpus,5 which yields 650k documents, spread over a

30-year period [Ammar et al., 2018]. For this domain, we study two tasks:

Mention type classification (SCIERC) We use the SciERC dataset from Luan et al. [2018] which contains

entity-relation annotations for computer science paper abstracts for a relatively wide range of years (1980s

to 2019). We subdivide the annotated data into time periods with roughly equal-sized numbers of papers

4Collected via the Twitter API.
5https://api.semanticscholar.org/corpus/
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(1980–1999, 2000–2004, 2005–2009, 2010–2016). The task is to map a mention of a scientific concept to a

type (Task, Method, Metric, Material, Other-Scientific-Term, or Generic).

AI venue classification (AIC) We also examine temporal misalignment on the task of identifying whether

a paper was published in AAAI or ICML. We group the data into roughly equal-sized time periods (2009–

2011, 2012–2014, 2015–2017, and 2018–2020). This task is, loosely, a proxy for topic classification and

author disambiguation applications [Subramanian et al., 2021].

Domain 3: News Articles News articles make up a significant part of the data commonly used to train

LMs [Dodge et al., 2021]. News articles convey current events, suggesting strong temporal effects on

topic. For adaptation, we use 9M articles from the Newsroom dataset [Grusky et al., 2018], ranging from

2009–2016.6 We experiment with three tasks on news articles:

Newsroom summarization (NEWSUM) The Newsroom dataset provides a large quantity of high-quality

summaries of news articles [Grusky et al., 2018]. We group articles by years for this task (2009–2010,

2011–2012, 2013–2014, 2015–2016). Note that this task, unlike the other tasks considered here, is not a

document classification task.

Publisher classification (PUBCLS) The Newsroom dataset also provides metadata, such as publication

source. We take the documents published by the 3 most prolific publishers (Fox News, New York Times, and

Washington Post) and train models to classify documents among them. We bin the years (2009–2010, 2011–

2012, 2013–2014, 2015–2016). This task is a proxy for applications that seek to infer fact provenance [Zhang

et al., 2020]. We note that, unlike in our other tasks, we downsample to ensure that the labels are equally

balanced.

Media frames classification (MFC) “Framing” often refers to the emphasis or deemphasis of different

social or cultural issues in the media’s presentation of the news [Entman, 1983]. Card et al. [2015] provide a

dataset of news articles annotated with framing dimensions. We predict the primary frame of a document,

6https:// lil.nlp.cornell.edu/newsroom
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treating the problem as a 15-way classification task. We bin by timestamp (2009–2010, 2011–2012, 2013–

2014, 2015–2016).

Domain 4: Food Reviews Food and restaurant reviews have been widely studied in NLP research. We

considered this domain as a possible contrast to those above, expecting less temporal change. Using data

from the Yelp Open Dataset,7 we consider one task:

Review rating classification (YELPCLS) This is a conventional sentiment analysis task, mapping the text

of a review to the numerical rating given by its author [Pang et al., 2002; Dave et al., 2003]. We partition the

data by year (2013 to 2019) and ensure that each timestep has a roughly equal amount of reviews.

3.5 Empirical Results and Analysis

In this section, we summarize our experimental analysis, resulting from more than 500 experiments. In our

experiments, we primarily explore the effect of temporal misalignment on GPT2 [Brown et al., 2020b], a LM

often used for generation.8 We report the macro F1 score for classification tasks and Rouge-L [Lin, 2004] for

NEWSUM.

We first focus on quantifying temporal misalignment in end tasks. As a preliminary analysis, we

investigate how the marginal distribution over labels changes over time. We then study how temporal

misalignment affects performance of GPT2 models in downstream tasks with temporal finetuning (Q1,Q2).

We find that the amount of performance degradation can vary by task; in some cases the degradation can be

severe.

We then study how temporal misalignment affects LMs. As a first step, we analyze how vocabularies

change over time in our datasets. We then experiment with (Q3) how temporal misalignment affects upstream

language modeling and (Q4) how effective temporal adaptation, or additional pretraining on a target year, is in

mitigating misalignment. We find that while LMs are affected by misalignment, temporal domain adaptation

is not enough to mitigate temporal misalignment.

7https://www.yelp.com/dataset
8In our preliminary results, we found that BERT, RoBERTa, and GPT2 models showed similar patterns.
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Figure 3.4: KL divergence between label distributions over time for a subset of tasks. See Appendix ?? for
full results. For each cell, we compare the distribution of labels to that of the first time period; e.g., the 2017
POLIAFF cell contains the KL-divergence between the label distributions of POLIAFF in 2017 and 2015.
While most tasks see little change over time, POLIAFF and MFC see a large shift.

3.5.1 Temporal Misalignment in Tasks

How much does misalignment affect task performance? We find that it depends on the task.

Label Distribution Drift We first investigate how task datasets undergo changes in the marginal distribution

over labels due to time. For each task and each test period, we calculate the KL divergence between the

label distributions in that period and the first test period. Full results are reported in Fig. 3.4. In three cases,

we detected notable label distribution drift: POLIAFF, AIC, and MFC.9 In POLIAFF, Republican tweets

outnumbered Democratic ones by over a 2:1 ratio in 2015, but the reverse held by 2020. This observation

shows that, regardless of the properties of NLP models, the nature of many tasks changes over time, if only

because the output distribution changes.

Finetuning As described in §3.4, for each task, we create training and evaluation sets associated with

different time periods. We finetune GPT2 on each of the task’s training sets and evaluate each on two

evaluation sets. Note that there is no domain adaptation here.

Fig. 3.5 shows our results on downstream tasks (with no domain adaptation). To get more reliable

9For other tasks, it is possible that the data collection/annotation procedures suppressed label distribution changes that would be
visible in data “from the wild.”
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Figure 3.5: Temporal misalignment in finetuning affects task performance (§3.5.1). In all cases, higher
scores are better. The heatmap is shaded per column, i.e., the darkest shade of orange in a cell means the
cell has the highest score in that column. Mismatch between the the training and evaluation data can result
in massive performance drop; degree varies by task. For example, YELPCLS, MFC, and TWIERC show
minimal degradation. In contrast, POLIAFF and NEWSUM major deterioration over time.

estimates, each number in this heatmap is an average of five independent experiments with different random

seeds. A summary of the fine-tuning results, in terms of TD scores (§3.3.1) is in Table 3.2 which indicates the

speed of temporal degradation, for every year that the training and evaluation data diverges. Recall that this

score (applied to task performance measures) summarizes the strength of the effect of temporal misalignment

on the score, using evidence from across experiments.

Temporal misalignment degrades task performance substantially. Fig. 3.5, similar to earlier work [Röttger

and Pierrehumbert, 2021], shows that models trained on data from the same time period as the test data

perform far better than those from the past. The performance drop is most severe for POLIAFF (TD=7.72)

and PUBCLS (TD=5.45).

(Q1) Temporal misalignment has a measurable effect on most tasks. Half of our tasks see an average

loss of at least 1 point for each time period that the training data diverges from the test data. For datasets like

SCIERC that make use of data from three decades or more, this effect could add up.
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Domain Task (metric) TD r

Twitter POLIAFF (F1) 7.72 0.98
TWIERC (F1) 0.96 0.74

Science SCIERC (F1) 0.67 0.93
AIC (F1) 1.79 0.93

News
PUBCLS (F1) 5.46 0.85
NEWSUM (Rouge-L) 1.38 0.91
MFC (F1) 0.98 0.86

Reviews YELPCLS (F1) 0.26 0.30

Table 3.2: Finetuned models’ temporal degradation summary scores (TD; §3.3.1; details in Figure ??). These
scores estimate how fast a model degrades as the time period of training and evaluation data diverge (higher
scores imply faster degradation). We note that since we normalize by the overall time range of a task, the
temporal partitions we used do have an effect on the TD scores. For example, AIC spans ten years, even
though there are only four partitions. We also show the correlation coefficient, r, that measures the strength
of a linear relationship (0 meaning no correlation, 1 being perfectly correlated). In all cases but Yelp, the
degree of degradation has a moderate correlation with the distance between the training and evaluation years
(r > 0.5, p < 0.05). We use the Wald test with the null hypothesis that the slope is 0.

Moreover, 1 point of difference can be meaningful, especially for the summarization task where we

measure Rouge-L. According to the leaderboard,10 the best three performing models are within a point of

each other in Rouge-L [Shi et al., 2019, 2021; Mendes et al., 2019]. The task has a TD score of 1.38. On

average, a time period of temporal misalignment results has a larger effect on performance than changing

between the three best models.

(Q1) Performance loss from temporal misalignment occurs in both directions. Another observation

in Fig. 3.5 is that degradation happens in both directions (past and future). While most of the emphasis on

temporal misalignment is on how to adapt our stale models/data to the present time [Dhingra et al., 2021;

Lazaridou et al., 2021; Röttger and Pierrehumbert, 2021], our experiments also show that models trained

on newer data can be misaligned from the past, as well. Weak performance in older texts has been noted in

NLP for historical documents [Yang and Eisenstein, 2016; Han and Eisenstein, 2019]. However, our findings

indicate deterioration can occur sooner—just a few years rather than decades or centuries.

(Q2) Tasks, even in the same domain, are affected differently. Consider the two tasks of POLIAFF

and TWIERC (both in the Twitter domain), with TD scores of 7.72 and 0.96, respectively. Of our 8 tasks,
10https:// lil.nlp.cornell.edu/newsroom/ index.html
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Figure 3.6: Vocabulary overlap between time periods, over a subset of our tasks’ datasets. Each cell shows
the % overlap between the vocabularies of two time periods.

TWIERC, MFC, and YELPCLS are the most robust to temporal misalignment (TD scores of 0.96, 0.98

and 0.26, respectively). The high levels of variation show that temporal misalignment affects performance

through labeled datasets, not just unlabeled pretraining data.

3.5.2 Temporal Misalignment in LMs

As LMs are widely used in modern NLP systems, it is important to inspect how robust they are to temporal

misalignment. We seek to understand how temporal misalignment affects the language modeling task in our

four domains and if temporal domain adaptation helps in downstream tasks.

Vocabulary Shift We first consider an extremely simple measurement of language shift: how do vocabu-

laries change across time periods?11 We use a similar procedure to the one Gururangan et al. [2020b] used

for analyzing domain similarity. Fixing a domain, we compare the (unigram) vocabularies of each pair of

training sets. The vocabularies are built using the 10K most frequent terms from each time period. We note

that vocabulary overlap is higher between two time periods the closer they are. Most domains see a sizeable

amount of shift; however, Yelp is relatively stagnant. Fig. 3.6 visualizes the overlap measurement. Table 3.3

shows the correlation between model performance and the word overlap.

Temporal Domain Adaptation Researchers have studied the broader problem of distributional shift

[Shimodaira, 2000; Zhang et al., 2013]. The NLP community has historically tackled these problems via

11This can be understood as a model-free way to measure covariate shift for NLP tasks that take text as input.
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Domain Task (metric) Pearson’s r

Twitter POLIAFF (F1) 0.84
TWIERC (F1) 0.51

Science SCIERC (F1) 0.72
AIC (F1) 0.79

News
PUBCLS (F1) 0.65
NEWSUM (Rouge-L) 0.72
MFC (F1) 0.80

Reviews YELPCLS (F1) 0.14

Table 3.3: Pearson r correlation coeffecients between the word overlap and performance of each task.

domain adaptation [Jiang and Zhai, 2007; Daumé III, 2007; Gururangan et al., 2020b]. Taking inspiration

from these approaches, we next apply DAPT to GPT2, treating each time period as a domain: for each time

period, we continue pretraining and then evaluate perplexity. We consider how the perplexity varies with the

(mis)alignment between the DAPT training data and the evaluation data. We measure the TD score, which

summarizes how much performance is affected by temporal misalignment (now applied to perplexity). The

results of temporal domain adaptation are in Fig. 3.7.

(Q3) Domains are a major driver of temporal misalignment in LMs. Consistent with Lazaridou et al.

[2021], Fig. 3.7 shows degradation of LM due to temporal misalignment; it further shows considerable

variation by text domain. Twitter changes most rapidly, and food reviews are much slower. This observation

is consistent with past work on language change in social media [Stewart and Eisenstein, 2018a; Eisenstein

et al., 2014]. To the extent that a LM’s practical usefulness is associated with its fit to new data, researchers

and practitioners should understand the temporal dynamics of their target text domains and plan LM updates

accordingly.

Joint Effects of Temporal Adaptation and Finetuning As discussed in §3.2, continued pretraining of

an LM on in-domain text has been shown to improve task performance. Our prior results show that both

downstream tasks and language modeling are affected by temporal misalignment. Can temporal domain

adaptation help mitigate the effects of misalignment in downstream tasks?

Here we consider how the time period of the data selected for continued pretraining affects task perfor-

mance. For each task’s evaluation set, we apply DAPT twice: once with the earliest available time period’s
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Figure 3.7: Perplexity of GPT2 after adaptive pretraining on temporally-selected data in different domains
(lower is better). The TD score (in parentheses) estimates the expected perplexity rise (i.e., degradation) for
every time period of misalignment between evaluation and training times. Degradation follows the expected
pattern, but the magnitude varies by domain.

unannotated data and once with the latest’s. We then finetune and evaluate on data from the same time periods

as in the earlier experiment.

(Q4) Temporal adaptation does not overcome degradation from temporally misaligned labeled data.

In Table 3.4, we see small performance gains from temporal domain adaptation on LMs, and in some cases it

is harmful. These observations underscore the importance of the labeled data; adjustments to the LM alone

do not yet appear sufficient to mitigate the effects of temporal misalignment. In contrast to temporal domain

adaptation, which does not mitigate temporal misalignment’s effects, finetuning on temporally-updated

labeled data is more effective.

This can be observed in each task-specific sub-table of in Table 3.4: the top-left and bottom-right

quadrants (fine-tuning on time-stamp that is used for evaluation) generally lead to higher scores.
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Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2015 2020 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2014 2019

Twitter
 (PoliAff)

F1

2015
Default 91.4 48.4

Twitter
 (TwiERC)

F1

2014
Default 74.3 68.9

Default → 2015 92.2 47.5 Default → 2014 76.1 69.6
Default → 2020 90.9 50.8 Default → 2019 74.1 68.9

2020
Default 45.8 78.0

2019
Default 71.0 74.6

Default → 2015 47.2 76.9 Default → 2014 73.1 75.2
Default → 2020 44.2 78.3 Default → 2019 73.7 75.8

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-11 2018-20 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  1980-1999 2010-2016

Scienctific
(AIC)
F1

2009-2011
Default 79.0 72.0

Scientific 
(SciERC)

F1

1980-1999
Default 67.9 57.2

Default → 2009-2011 94.5 68.8 Default → 1980-1999 73.2 66.4
Default → 2018-2020 88.4 86.0 Default → 2010-2016 73.7 66.8

2018-2020
Default 72.0 85.0

2010-2016
Default 60.3 72.5

Default → 2009-2011 87.2 65.2 Default → 1980-1999 63.4 75.0
Default → 2018-2020 86.8 79.4 Default → 2010-2016 64.8 76.0

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016

News
(MFC)
F1

2009-2010
Default 27.0 26.0

News
(PubCls)
F1

2009-2010
Default 94.1 52.4

Default →  2009-2010 30.6 31.8 Default →  2009-2010 95.4 54.0
Default → 2015-2016 29.8 30.0 Default → 2015-2016 95.4 53.5

2015-2016
Default 23.8 33.4

2015-2016
Default 71.3 88.2

Default →  2009-2010 29.7 41.6 Default →  2009-2010 80.4 90.7
Default → 2015-2016 32.7 41.9 Default → 2015-2016 78.7 91.1

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016 Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation →
Pretrain ↓ 2014 2019

News
(NewsSum)
Rouge-L

2009-2010
Default 36.4 29.0

Food
Reviews
(Yelp)
F1

2013
Default 58.6 58.3

Default →  2009-2010 36.4 29.1 Default →  2013 63.3 60.1
Default → 2015-2016 36.1 28.9 Default → 2019 60.2 62.3

2015-2016
Default 27.8 31.8

2019
Default 58.3 58.3

Default →  2009-2010 28.2 31.8 Default →  2013 60.2 62.3
Default → 2015-2016 27.8 31.6 Default → 2019 60.8 62.3

Table 3.4: Combination of temporal adaptation and finetuning (§3.5.2) on our tasks. The row labeled
“Default” corresponds to a model that has not been adapted (uses the default pretraining). The models with
temporal domain adaptation are shown in rows labeled “Default → y” and each is comparable to the “Default”
row above it. The color coding is proportional to the magnitude of the performances of each task (darker
shade of orange indicates higher scores). It can be observed that temporal finetuning has a greater impact
than temporal pretraining. Each quadrant of 3 for each task, indicating the same finetune and evaluation
years, but different pretraining conditions, are mostly uniform. In contrast, we notice a sharper difference in
performance when varying the finetuning year (comparing the quadrants vertically).
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3.6 Discussion and Limitations

We provided a well-controlled suite of experiments to study the effects of temporal misalignment on model

performance. However, the setup has some drawbacks. For example, we expect that models trained on

data accumulated across multiple time periods would perform well [Lazaridou et al., 2021; Röttger and

Pierrehumbert, 2021; Jin et al., 2021].

We chose the time periods in our study so that they would each have sufficient and consistent training data

sizes. However, amounts of data in a particular domain or task will fluctuate over time. Moreover, the rate of

language use change may not be uniform. Time periods should be selected with these two considerations in

mind.

Our findings indicate that temporal misalignment’s effects depend heavily on the task. Though not studied

here, the same issues may arise in annotation efforts; consider, for example, recent work on controversy

[Zhang et al., 2018] and social norms [Xu et al., 2021; Zhou et al., 2021] likely hinges on constructs that may

be time sensitive. Annotations that are temporally misaligned with the original data being annotated may be

anachronistic.

An opportunity for future exploration is in the context of real-world events with sudden changes such

as COVID-19 pandemic [Cao et al., 2021] or political changes, which influence tasks such as question

answering [Dhingra et al., 2021; Zhang and Choi, 2021].

Extensive work has been done on modeling and detecting lexical semantic change, or how words evolve

in meaning [Hamilton et al., 2016; Rudolph and Blei, 2018; Gonen et al., 2020]. Techniques and intuition

from this body of work may be useful in finding solutions to mitigate degradation due to misalignment.

We believe that this phenomenon is an important aspect of temporal misalignment, but leave disentangling

semantic shifts from other, perhaps task-related factors, for future work.

Continual learning, which allows models to learn from a continuous stream of data, could also be one

way to mitigate temporal misalignment. Most prior work in this space has focused on continual learning

in LMs [Jin et al., 2021] or learning disparate tasks [de Masson d'Autume et al., 2019; Huang et al., 2021].

Future work may investigate continual learning algorithms for tasks that change over time.

Our results showed that straightforward domain adaptation was unable to mitigate the effects of temporal

misalignment. Recent work in language modeling has elevated the importance of domains by using a mixture
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of domains [Gururangan et al., 2021] or giving domains a hierarchical structure [Chronopoulou et al., 2021].

More sophisticated approach to domains, in line with these works, could lead to temporally robust models.

While we found that task-specific finetuning is more effective than temporal adaptation, new labeled data

can be expensive. Ways to characterize or detect changes in a task could be helpful in efficiently updating

datasets [Lu et al., 2019; Webb et al., 2018]. Future work can also treat dataset maintenance as an optimization

problem between the cost and gains of annotating new data [Bai et al., 2021].

3.7 Summary

Changes in language use over time, and how language relates to other quantities of interest in NLP applications,

have clear effects on the performance of those applications. We have explored how temporal misalignment

between evaluation data and training data—both data used to train LMs and annotated data used to finetune

them—affects performance across a range of NLP tasks and domains, taking advantage of datasets where

timestamps are available. We compile these datasets as a benchmark for future research as well. We also

introduced a summary metric, TD score, that makes it easier to compare models in terms of their temporal

misalignment.

Our experiments revealed considerable variation in temporal degradation across tasks, more so than

found in previous studies [Röttger and Pierrehumbert, 2021]. These findings support our intuition: each task

has unique characteristics based on the domain, community, or task definition and are affected by temporal

misalignment at differing rates. Consequently, practitioners should consider the task or community they are

modeling when making design decisions.

Moreover, our results motivate continued study of temporal misalignment across applications of NLP,

its consideration in benchmark evaluations,12 and vigilance on the part of practitioners able to monitor live

system performance over time.

Notably, we observed that continued training of LMs on temporally aligned data does not have much

effect, motivating further research to find effective temporal adaptation methods that are less costly than

ongoing collection of annotated/labeled datasets over time.

12Indeed, for benchmarks where training and testing data are aligned, our findings suggest that measures of performance may be
in some cases inflated.
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Chapter 4

Measuring Persuasive Skill Over time

4.1 Introduction

Natural language interactions between members of a community tend to shift over time, adopting new

phrases or centering discussion on new ideas. As discussed in Chapter 3, temporal misalignment between

test and training sets can lead to severe performance degradation over time. While these findings place more

responsibility on practitioners, we also find that using knowledge of social interaction in communities can

motivate novel work. In this case, we focus on integrating change over time in our models. Prior work has

shown that members learn how to integrate into the community more effectively by adopting new jargon

[Danescu-Niculescu-Mizil et al., 2013] or changing behaviors [Jurgens et al., 2017]. Likewise, researchers

have modeled user knowledge and improvement in language acquisition [Settles et al., 2020] or in online

reviews [McAuley and Leskovec, 2013].

In this chapter, we explore skill estimation of individual members of a community of debaters and how

their language evolves with skill over time via natural language interactions. We find that online debate

communities offer an opportunity to investigate persuasive skill. These communities feature users who

participate in multiple debates over their period of engagement. Such debates involve two parties who

willingly and formally present divergent opinions before an audience. Unlike other media of persuasion, such

as letters to politicians, there is a clear signal, a win or loss, indicating whether or not a debater was successful

against the adversary. This work aims to quantify the skill level of each debater in an online community and
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also investigates which factors contribute to expertise.

While persuasion has generated interest in the natural language processing community, most researchers

have not tried to quantify the persuasiveness of a particular speaker. Instead, they estimate how persuasive a

text is, using linguistic features such as the author’s choice of wording or how they interact with the audience

[Tan et al., 2014, 2016; Althoff et al., 2014; Danescu-Niculescu-Mizil et al., 2012]. Previous research has

also established that debaters’ content and interactions both contribute to the success of the persuader [Tan

et al., 2016; Zhang et al., 2016; Wang et al., 2017]. These works have found textual factors that contribute to

a debater’s success, but they do not emphasize the role of the individual debater.

There has been some recent work on studying individual debaters. Durmus and Cardie [2019] analyze

users and find that a user’s success and improvement depend on their social network features. We take another

approach by estimating each user’s skill level in each debate they participate in by considering their debate

history. These estimates reveal features correlated with skill and the importance of particular debates over

time.

We extend the Elo [1978] rating system, a model designed for rating players in two-player games, for the

debate setting using linguistic features. We construct a family of models based on Elo and decompose them

into two design choices that align with two questions we hope to answer: 1) the features we use and 2) how

we might choose to aggregate those features from past debates.

To validate our skill estimates, we introduce a forecasting task (§4.4). Previous work predicted the

winner of a debate using the text of the current debate. In contrast, we aim to predict winners using our skill

estimates before the debate (ignoring the current debate’s content). This design ensures that we are modeling

skill of the debater, as inferred from past performance, not the idiosyncrasies of a particular debate.

We also investigate the predictive power of our estimates through an analysis of the results (§4.6). We

show that our full model outperforms the baseline Elo model, approaching the accuracy of an oracle that does

use the text of the current debate. Moreover, we find that not all past debates are equally useful for prediction:

more recent debates are more indicative of the user’s current level of expertise. This adds support to our

conjecture that individual debaters tend to improve through the course of their time debating. Finally, we

track the linguistic tendencies of each debater over the course of their debating history. We show that several

features correlated with high skill, such as length of their turns, increase over time for the best debaters, but
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stay static for those with less skill. These findings give further evidence that debaters improve over time.

This chapter contains work originally published in [Luu et al., 2019].

4.2 Data

We use both debate and user skill data from the Debate.org dataset introduced by Durmus and Cardie [2018].

Any registered user on the website can initiate debates with others or vote on debates conducted by others.

4.2.1 Mechanism of Debate.org

Registered users can create a debate under a topic of their choosing. The person initiating the debate, called

the instigator, fixes the debate’s number of rounds (2–10) and chooses the category (e.g., politics, economics,

or music) at the start of the debate. The instigator then presents an opening statement in the first round and

waits for another user, the contender, to accept the debate and write another opening statement to complete

the first round.1 We define a debater’s role as being either the instigator or contender.

To determine the debate winner, other Debate.org users vote after the debate ends. In this phase, voters

mark who they thought performed better in each of seven categories (see Figure 4.1).2 This phase can last

between 3 days and 6 months, depending on the instigator’s choice at the debate’s creation. After this period,

the debater who received the most points wins the debate. We record in our dataset the textual information,

participants, and voting records for each debate.

4.2.2 Definition of Winning

The Debate.org voting system lets us define a “win” in various ways (see Figure 4.1). In this study, we would

like to model how convincing each debater is. One approach might be based on Oxford-style debates like

the IQ2 dataset from Zhang et al. [2016], in which scores are based on the number of audience members

who changed their minds as a result of the debate. We found here that the majority of voters do not deviate

from their stances before the debate, and most voters tend to vote for who they already agree with. Therefore,

1While many debaters use their first round to make an opening statement, some use it only to propose and accept debates. If the
first turn in an n-round debate is under 250 words, we merge each debater’s first two turns and treat the debate as an (n− 1)-round
debate.

2Another system of voting lets voters choose who they thought performed better over the entire debate. While these appear in the
dataset, we do not use them in this paper.
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Voter

Instigator Contender

Figure 4.1: An example of the Debate.org voting system.

#Users #Debates
Completed Debates 42,424 77,595
Completed & Convincing 21,753 29,209
Full Filtered 1,284 4,486

Table 4.1: Description of the debate.org dataset from Durmus and Cardie [2018] and the filtered datasets.
Full Filtered is a subset of Completed & Convincing that requires that participants of each debate have
engaged in five or more debates. We use Full Filtered for the remainder of our analysis.

we count the number of times each debater was rated as more convincing to a voter despite presenting a

viewpoint that the voter disagreed with before the debate. The debater with the higher count of such votes is

considered the “winner” in the remainder of this paper.

4.2.3 Dataset Statistics

From an unfiltered set of 77,595 debates, we remove all debates where a user forfeits, that lack a winner

(§4.2.2), or that do not have a typical voting style with seven categories, leaving 29,209 completed debates.

We record the number of debates that each user completes (see Figure 4.2, left). We find that the quantity

of debates per user follows a heavy-tailed distribution where most users do not participate in more than one

debate. For the remainder of the work, we focus on the 1,284 (out of 42,424 total users) who have completed

five or more of the debates described above. This leaves us with 4,486 debates where the participants have

completed at least five debates. See Table 4.1.

We also record the number of votes that each debate attracted (see Figure 4.2, right). This number also

follows a heavy-tailed distribution.
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Figure 4.2: Complementary cumulative distribution functions (1− CDF) for the total number of debates
a user finished. The blue line tracks only debaters who engaged in and successfully concluded at least one
debate, while the red line tracks users who have finished at least five debates in the filtered dataset. The right
plot similarly shows the complementary cumulative distribution for the number of votes given per debate for
all debates and the filtered dataset.

4.3 Expertise Estimation

In order to explore debater expertise and discover what contributes to a user’s expertise over their time on

Debate.org, we begin with a conventional approach to skill estimation, the Elo rating system, which serves as

both a baseline and the basis for our final model.

4.3.1 Elo Model

Elo originated as a ranking system for chess players; it has been adapted to other domains, such as video

games[Herbrich et al., 2007]. It is one of the standard methods to rate players of a two-player, zero-sum

game [Elo, 1978].3 Elo assigns positive integer-valued scores, typically below 3,000, with higher values

interpreted as “more skill.” The difference in the scores between two debaters under a logistic model is used

as an estimate of the probability each debater will win. For example, consider a debate between A and B. A

has an Elo rating of RA = 1900, and B has an Elo rating of RB = 2000. Using the Elo rating system, pA,

the probability that A wins is4

pA =
1

1 + 100.0025(RB−RA)
=

1

1 + 100.25
≈ 0.36 (4.1)

3The Elo model is a special case of the Bradley-Terry model [Bradley and Terry, 1952].
4The base of the exponent, 10, and the multiplicative factor on the difference RA −RB , 0.0025, are typically used in chess.
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Ratings are updated after every debate, with the winner (equal to A or B) gaining (and the loser losing)

∆ = 32(1− pW ) points. (32 is an arbitrary scalar; we follow non-master chess in selecting this value.)

Note that the magnitude of the change corresponds to how unlikely the outcome was. While the Elo

ratings traditionally take only a win or loss as input, there have been adjustments to account for the magnitude

of victory. One such method would be to use the score difference between the two players to adjust the Elo

gain [Silver, 2015]. If we let SA and SB be scores for A and B respectively the modified gain ∆′ is

∆′ = log(|SA − SB|+ 1)×∆ (4.2)

Under this model, we represent a user’s history and skill level as a single scalar, i.e., their Elo rating. The

Elo system ignores all other features, which include the style a debater uses in the debates and the content of

their argument. We therefore view this model as a baseline and extend it.

4.3.2 Do Debaters Get Better Over Time?

Our initial data analysis uses the Elo model to investigate whether users improve over time at all in the first

place. An increase in Elo score can be seen as the rating system merely becoming more accurate with another

sample or an actual increase in the player’s skill. We wish to show that there is no fixed rating for a user, but

rather that the rating is a moving target. A counterhypothesis is then that the users’ skill levels do not change

despite their activity on Debate.org. If true, then we would expect their final Elo rating to be also indicative

of their skill level at the beginning of their Debate.org activity.

To test this hypothesis, we first define an upset as a debate where pW < τ , that is, where the winner of

the debate was estimated (under Elo) to win with low probability (set using threshold τ ). If users tend to have

static skill levels, then participating in many debates does not affect debaters’ skill, but simply provides more

samples for measuring their skill. It follows that we would expect upsets to occur at the same rate early and

late in each one’s career given debaters’ static skill. In this analysis, we calculate pA and pB for each debate

using A’s and B’s final Elo ratings, which we take to be the most accurate estimate of their (presumed static)

skill levels.5

5In a forecasting analysis like the one in §4.4, this would be inappropriate, as it uses “future” information to define upsets. This
notion of upset is not used in the forecasting task.
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Figure 4.3: Upset rates (aggregated across users) across history quintiles, τ = 0.45. The error bars represent
the 95% confidence intervals.

To operationalize “early” and “late,” we divide a user’s debates into quintiles by time, comparing the

upset rate in different quintiles. In this analysis, we only consider users with at least ten debates (N = 4420).6

We see a downward trend in the upset rate (Figure 4.3). In particular, the first and last quintiles show a

statistically significant difference under a paired t-test (p < .001), meaning that a user’s final Elo score is not

a good measure of skill at earlier times. We take this finding as suggestive that users of Debate.org adapt as

they participate in more debates.

4.4 Predicting Expertise using Earlier Debates

Our aim is to estimate a debater A’s persuasive ability after observing a series of debates they participated in

(denoted dA1 , . . . , d
A
t−1 if we are estimating ability just before the tth debate). We wish to take into account

the content of those debates (not merely their outcomes, as in Elo), so as to understand what factor reveals a

debater’s skill levels. Drawing inspiration from Elo’s interpretation as a score that can be used to predict each

debater’s probability of winning (Eq. 4.1), we formulate a prediction task: estimate pA for A’s tth debate,

given dA1 , . . . , d
A
t−1 and also the opponent’s debate history (which might be of a different length).

6Unlike in the rest of our analysis, we do not require the opponents of the users to have also participated in at least ten debates.
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By observing debate outcomes alongside the two participants’ histories, we can estimate the parameters

of such a probability model. Elo provides a baseline; rather than opaque scores associated with individual

users at different times, we seek to explain the probability of winning through linguistic features of past

debate content.

Unlike previous work [Zhang et al., 2016; Potash and Rumshisky, 2017; Tan et al., 2018], we do not use

the content of the current debate (dAt ) to predict its outcome; rather, we forecast the outcome of the debate as

if the debate has not yet occurred. In the remainder of this section, we discuss features of past debates and

ways of aggregating them.

4.4.1 Incorporating a Linguistic Profile into Elo

Elo scores are based entirely on wins and losses; they ignore debate content. We seek to incorporate content

into expertise estimation by using linguistic features. If we modify the exponential base in Equation 4.1

from 10 to e, we can view Elo probabilities (e.g., pA) as the output of a logistic regression model with one

feature (the score difference, RA −RB) whose weight is 0.0025; that is, pA = σ(0.0025 · (RA −RB)). It is

straightforward to incorporate more features, letting

pA = σ (w · (RA −RB)) (4.3)

where w is a vector of weights and RU is user U ’s “profile,” a vector of features derived from past debates.

In this work, the linguistic profiles are designed based on extant theory about the linguistic markers of

persuasion, and the vectors are weighted averages of features derived from earlier debates.

4.4.2 Features

We select features discussed in prior work as the basis for our linguistic profiles [Tan et al., 2016, 2018;

Zhang et al., 2016]. We extract these measurements from each of the user’s debates. For a given debate and

user, we calculate these values over the rounds written by the user. For example, if we were interested in a

debate by a user as the instigator, we would only calculate features from the instigator rounds of that debate

(since the contender rounds of that debate were written by their opponent). Table 4.2 shows the full list of

features.
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Hedging with fightin’ words. We introduce one novel feature for our work: hedging with fightin’ words.

“Fightin’ words” refer to words found using a method, introduced by Monroe et al. [2008], which seeks to

identify words (or phrases) most strongly associated with one side or another in a debate or other partisan

discourse.7 We are interested in situations where debaters evoke fightin’ words (their own, or their opponents’)

with an element of uncertainty or doubt. We use each debater’s top 20 fightin’ words (unigrams or bigrams)

as features, following Zhang et al., 2016, who found this feature useful in predicting winners of Oxford-style

televised debates. We also count co-occurences of fightin’ words with hedge phrases like “it could be possible

that” or “it seems that.” An example of this conjoined feature is found in the utterance “Could you give

evidence that supports the idea that married couples are more likely to be committed to [other tasks]?”

where hedge phrases are emboldened and brackets denote fightin’ words (which are selected separately within

each debate). We use a list of hedging cues curated by Tan et al. [2016] and derived from Hyland [1996] and

Hanauer et al. [2012]. The conjoined feature is the count of the user’s sentences in a debate where a fightin’

word cooccurs with a hedge phrase in a sentence.

4.4.3 Aggregating Earlier Debates

Since we consider the full history of a debater when estimating their skill level, we opt to aggregate the textual

features over each debate. We do so by taking a weighted sum of the feature vectors of the previous debates.

We consider four weighting schemes, none of which have free parameters, to preserve interpretability. Let f

be any one of the features in the linguistic profile, a function from a single debate to a scalar.

• Exponential growth: the most recent debates are most indicative of skill,
∑t−1

i=1
f(dAi )

2t−i . We take this to

be the most intuitive choice, experimentally comparing against the alternatives below to confirm this

intuition.

• Simple average: each earlier debate’s feature vector is weighted equally, 1
t−1

∑t−1
i=1 f(d

A
i ).

• Exponential decay: the first debates are most indicative of skill,
∑t−1

i=1
f(dAi )

2i
.

• Last only: only the single most recent debate matters, f(dAt−1) (an extreme version of “exponential

growth”).
7The method estimates log-odds of words given a side, with Dirichlet smoothing, and returns the words with the highest log-odds

for each side.
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Feature Description
Elo Score Traditional Elo score calculated and updated. Updated tradition-

ally, not averaged as in §4.4.3.
n/a

Length Number of words this user uttered in the debate. ↑↑↑
Part of speech Count of each noun, verb, adjective, preposition, adverb, or pro-

noun from the participant in the entire debate.
Noun:(↑↑↑)
Adj:(↑↑↑)

Flesch reading ease Measure of readability given the number of sentences in a docu-
ment and the number of words in each sentence [Kincaid et al.,
1975].

↑↑

Emotional words Cues that indicate a positive or negative emotion [Tausczik and
Pennebaker, 2010].

Pos:(↑↑↑)
Neg:(↑↑↑)

Links Links to external websites outside of debate.org. This feature
operationalizes the number of sources a debater used.

Questions The number of questions the user asked in the debate. ↓↓↓
Quotations The number of quotations the user included in the debate.
Hedging The number of phrases that soften a statement by adding uncer-

tainty [Hyland, 1996; Hanauer et al., 2012].
Fightin’ words The number of instances of words most strongly associated with

either debater [Monroe et al., 2008].
↑↑↑

H∧FW The number of cooccurences of hedging and fightin’ words, de-
scribed in §4.4.2.

↑↑

Table 4.2: Debate-level features used in estimating skill levels. Aside from Elo, the features are a part of the
user’s linguistic profile. The third column represents statistical significance levels in comparing winners and
losers’ features (independently) with Bonferroni correction: ↑ is p < 0.05, ↑↑ is p < 0.01, ↑↑↑ is p < 0.001.
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Figure 4.4: We split data into training/development/test based on year. This chart shows the number of
debates in each subset of the data. We note that, for training, we use all the training debates from previous
years (e.g., if we were to test on 2015, we would train using the training splits from 2012, 2013, and 2014).
Each instance in this figure corresponds to a debater.

In each variation of our method, some or all of the linguistic profile features are aggregated (using one of

the four weighted averages), then applied to predict debate outcomes through logistic regression. We note

that if our sole aim were to maximize predictive accuracy, we might explore much richer linguistic profiles,

perhaps learning word embeddings for the task and combining them using neural networks and enabling

interactions between a debate’s two participants’ profiles.8 In this study, we seek to estimate skill but also to

understand it, so our focus remains on linear models.

4.5 Experimental Setup

We validate our skill models with a binary classification task, specifically forecasting which of two debaters

will win a debate (without looking at the content of the debate). Here we remove any debates where someone

forfeits or there is no winner. We then considered debates where each debater has completed at least five

of the remaining debates. As discussed in §4.2.1, the winner is taken to be the debater receiving the most

“more convincing argument” votes from observers who did not initially agree with them. We create four

training/evaluation splits of the data, using debates from 2013, 2014, 2015, and 2016 as evaluation sets (i.e.,

8Indeed, in preliminary experiments we did explore using a recurrent neural network instead of a fixed weighted average, but it
did not show any benefit, perhaps owing to the relatively small size of our dataset.
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development and test) and debates prior to the evaluation year for training. Figure 4.4 shows the number of

debates in each split. We note that our training sets are cumulative. For example, if we were to test on 2015

data, we would use the 2012, 2013, and 2014 training as training data.

Since we do not test on 2012 data or train on 2016 data due to the low number of debates before 2012

and after 2016, we treat the whole of 2012 as training data and 2016 as development and test. We report the

accuracy for each run.

We compare several predictors:9

• Full model: our model with all features, as described in §4.4, and (except where otherwise stated)

the exponential growth weighting. This model combines linguistic profiles from earlier debates with a

conventional Elo score.

• Full model with point difference: our full model as described above, but we scale the Elo gain by the

point difference as described in Equation 4.2.

• Linguistic profile only: our model with exponential growth weighting (except where otherwise stated), but

ablating the Elo feature. This model is most similar to those found in prior literature [Zhang et al., 2016;

Tan et al., 2018; Wang et al., 2017].

• Elo: the prediction is based solely on the Elo score calculated just before the debate. This is equivalent to

ablating the linguistic profiles from our model.

• Final Elo oracle: the prediction is based solely on the two debaters’ final Elo scores (i.e., using all debates

from the past, present, and future).

• Current debate text oracle: a model that uses the linguistic profile derived just from the current debate.

While this model is most similar to previous work, it is not a fair estimate of skill (since it ignores past

performance). We therefore view it as another oracle.

• Majority choice: a baseline that always predicts that the contender will win.10

9We use ℓ2 regularization in our models with the linguistic profile features.
10In this dataset, contenders win nearly 59% of the time, a fact frequently discussed in the Debate.org community; see http:

//ddo.wikia.com/wiki/Contender_Advantage. The contender advantage is sometimes attribted to having the “final say,” or to the fact
that contenders choose the instigators they wish to debate.
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Figure 4.5: Our results for the prediction task. Our full model outperforms the Elo baseline and approaches
the current debate text oracle.

4.6 Results

In this section, we first show that the expertise of a debater can be better estimated with the linguistic profile,

and then analyze the contribution of different components. We further examine the robustness of our results

by controlling for additional variables.

4.6.1 Prediction Performance

We first present our results with what we consider our best models, i.e., our full model (with point differences),

which consists of all features and uses the exponentially growing weight.

Importance of linguistic features. We see from Figure 4.5 that the full model outperforms the standard

Elo baseline. The gap between the two models suggests that the addition of the linguistic profile contributes

to the performance of the model and therefore plays a useful role in skill estimation. Moreover, the linguistic

profile only model shows that the linguistic profile features are not only useful, but have at least as strong
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predictive power as Elo alone. By only using the linguistic features aggregated over the course of a debater’s

history, without knowing winning records, we can forecast at least as well as the Elo baseline.

Importance of multiple debates. We also note that our full model only performs slightly worse than the

current debate text oracle despite the current debate text model directly observing the content of the debate.

This result implies that using information from only previous debates has at least similar predictive strength

to information from the debate at hand. Moreover, the large gap between the final Elo and current debate

text oracles implies that a user’s skill is evidenced by more than the content of a single debate. These results

further demonstrate the importance of accounting for debaters’ prior history.

Magnitude of victory might matter. Our full model with the point difference scaled Elo gain does roughly

as well or slightly better than our normal full model. As the focus of this paper is on incorporating linguistic

profiles, we use the full model without the point difference scaling for analyses in the rest of the paper.

4.6.2 Feature Ablations

We inspect the contribution of each feature by removing each one from the model. Then, for each feature,

we perform a bootstrap test over the last year of data (trained on 2012–2015 data; tested on 2016). At each

iteration, we sample 1000 training examples to train on, but fix the test set across iterations. We then train our

full model alongside several other models, each with a feature ablated, on the sample. We track the drop in

performance between our full model and each of our other models. We record the average performance over

100 iterations for comparison.

From Figure 4.6, we find that removing Elo results in the most severe drop in performance (5.8%).

Ablating part-of-speech, negative emotion, and length from our model had a moderate effect on performance.

Surprisingly, we find that, although the H∧FW feature is the overlap between hedge cues and fightin’ words,

the latter two features individually contribute very little to the performance of our model compared to H∧FW.

4.6.3 Combining Prior Debate Features

As described in §4.4.3, we explore several ways of combining features over the past debates. By inspecting

how these different aggregation functions might differ in performance, we hope to find out whether or not
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Figure 4.6: Our bootstrap on the feature ablations.
We record the average drop in performance across
100 iterations and tested on the 2016 test set. Higher
means a larger drop in performance.

Figure 4.7: Comparison in performance for the four
ways we aggregate features over time.

some debates are more important than others, if recency matters at all, and if some history is important at all.

We do so by 1) giving the last debates more weight (exponential growth), 2) giving all weights equal weight

(simple average), 3) giving the first debates more weight (exponential decay), and 4) giving all the weight

to the last debate (last debate only).

More debates help. When using only the last debate’s features and ignoring all previous debates, our

performance is initially very good in the in years 2013 and 2014 (when our training sets are smaller and

histories shorter). However, as debate histories become richer in the later years, last-only’s performance

drops in comparison to that of the growing weight aggregation. These results match our intuition: with

more experienced users, considering more debates gives us a better gauge of how a debater performs and a

debater’s more recent debates give a better snapshot of the user’s current skill level.

Later debates matter more. As hinted in our last-only results, giving the last debates more weight does

best in all four years. In light of its performance compared to the simple mean and decaying weight settings,

our results imply that not all debates contribute equally to a debater’s skill under our model. Indeed, our

results show that the most recent debates are also the most important for estimating a debater’s skill rating.
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Figure 4.8: Feature measurements averaged across each history quintile. We see that there is a general trend
for those who eventually become the best debaters to improve on these measures while the bottom users
stagnate. The error bars represent the 95% confidence intervals.

4.7 Language Change over Time: Experts Improve and the Worst Stagnate

Our findings from §4.6.3 imply that users tend to experience some change over time and that these changes

are helpful for forecasting who in a debate is more likely to win. In this section, we explore whether debaters’

linguistic tendencies change over time by tracking their use of features over the course of their debate history.

We examine how language use changes over time for the best and worst users. To do so, we divide each

user’s debate history into quintiles. For each quintile, we average the same features we use in the linguistic

profile that we use in our model (Table 4.2). We take the top 100 and bottom 100 users ranked by our model

to see how the trajectories change over time.

Figure 4.8 shows that best and worst users have different linguistic preferences even from the beginning

of their debating activities. The best debaters have a higher feature count in every case except for the Flesch

reading ease score. However, the best users do seem to improve over time in length, H∧FW, use of emotional

cues, and link use, which mostly correlates with our feature ablation in Figure 4.6 (p < 0.05 after Bonferroni

correction). In contrast, the worst users do not seem to experience any significant change over time except for

the length of their rounds and negative emotional cue use. In those cases, the worst users seem to worsen

over time.
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4.8 Related Work

In addition to the most relevant studies mentioned so far, our work is related to three broad areas: skill

estimation, argumentation mining, and studies of online debates.

Skill estimation. Ranking player strength has been studied extensively for sports and for online matchmak-

ing in games such as Halo [Herbrich et al., 2007]. The Bradley-Terry models (of which Elo is an example)

serve as a basis for much of the research in learning from pairwise comparisons [Bradley and Terry, 1952;

Elo, 1978]. Another rating system used for online matchmaking is Microsoft’s Trueskill™ rating system

[Herbrich et al., 2007], which assumes performance is normally distributed. Neural networks have recently

been explored [Chen and Joachims, 2016; Menke and Martinez, 2008; Delalleau et al., 2012], incorporating

player or other contextual game features from previous games at the cost of interpretability of those features.

Argumentation and persuasion. Past studies have noted the persuasiveness of stylistic effects such as

phrasing or linguistic accommodation. For example, Danescu-Niculescu-Mizil et al. [2012] showed that, in a

pool of people vying to become an administrator of a website, those who were promoted tended to coordinate

more than those who were not. Similarly, other works define and discuss power relations over discussion

threads such as emails [Prabhakaran and Rambow, 2014, 2013]. Additionally, Tan et al. [2018] explored how

debate quotes are selected by news media. They found that linguistic and interactive factors of an utterance

are predictive of whether or not it would be quoted. Prabhakaran et al. [2014] also studied political debates

and found that a debater’s tendency to switch topics correlates with their public perception. Argumentation

has also been studied extensively in student persuasive essays and web discourse [Persing and Ng, 2015; Ong

et al., 2014; Song et al., 2014; Stab and Gurevych, 2014; Habernal and Gurevych, 2017; Lippi and Torroni,

2016]. Most relevant to our work on how users improve over time, Zhang et al. [2017a] study how one

document may improve over time through annotated revisions. While our work examines users’ linguistic

change across multiple debates, they focus on how a user improves a single document over multiple revisions.

Online debates. There has also been recent work in characterizing specific arguments in online settings in

contrast to our focus on the debaters themselves. For example, Somasundaran and Wiebe [2009], Walker

et al. [2012], Qiu et al. [2015], and Sridhar et al. [2015] built systems for identifying the stances users take in
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online debate forums. Lukin et al. [2017] studied how persuasiveness of arguments depends on personality

factors of the audience.

Other researchers have focused on annotation tasks. For example, Park and Cardie [2014] annotated

online user comments to identify and classify different propositions. Hidey et al. [2017] annotated comments

from the changemyview subreddit, a community where participants ask the community to change a view they

hold. Likewise, Anand et al. [2011] annotated online blogs with a classification of persuasive tactics. Inspired

by Aristotle’s three modes of persuasion (ethos, pathos, and logos), their work annotates claims and premises

within the comments. Habernal and Gurevych [2016] used crowdsourcing to study what makes an argument

more convincing. They paired two similar arguments and asked annotators to indicate the more convincing

one. This framework allowed them to study the flaws in the less convincing arguments. The annotations they

produced offer a rich understanding of arguments which, though costly, can be useful as future work.

4.9 Summary

In this chapter, we used community interactions to estimate debater skill for individual members of an online

debate community. We introduced a method that uses a linguistic profile derived from an individual debater’s

history of past debates to model their skill level as it changes over time. Using data from Debate.org, we

formulate a forecasting task around predicting which of two debaters will be most convincing to observers

predisposed to be unconvinced. We find that linguistic profiles on their own are similarly predictive to

the classic Elo method, which does not parameterize skill according to attributes of a participant or their

behavior, but only models wins and losses. Moreover, we show that our findings are robust to topic of debate

and frequency of user activity. Further, a model combining linguistic profiles with Elo achieves predictive

accuracy nearly on par with an oracle based on the content of the debate itself. A particular feature combining

hedging with fightin’ words is notably important in our model, and consistent with evidence that debaters

improve with practice, more recent debates appear to provide better estimates of skill than earlier ones. To

verify our hypothesis that users improve, we explicitly track the feature use of debaters over the course of

their debating activity to show that the best users improve while the bottom users stagnate. Our approach sets

the stage for future explorations on the role of a user’s history profile on their future writings.
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Chapter 5

Conclusion

Natural language interactions are widely available in today’s world and make up a fair amount of the data

that we use. In this thesis, we proposed that NLP advances and social interactions in communities build on

each other.We explored two distinct communities, the scientific research community and an online debate

forum, and used the natural language interactions within them to understand how communities discuss each

other’s work and how they develop expertise over time.

In Chapter 2, we focused on the problem of explaining scientific text in relation to another. We introduced

a task where, given two documents, we would like to generate a natural language sentence that explains

how one document relates to the other and operationalize the task with in-line citation sentences. We train a

model based on GPT2, SCIGEN, for the task and investigate what types of inputs work well between random

sentences, introductions, and abstracts. We perform an extensive automated and human evaluation to find that

using the introduction and abstract as contexts work well. Moreover, we found that human and automated

metrics tell different stories; while SCIGEN performed worse than an IR baseline on automated metrics,

SCIGEN did much better on human assessments.

We also discussed how SCIGEN was essentially a static model that only captured a small snapshot

of the computer science research community at a particular time and could perform worse as the time

between test and training time periods gets larger. Chapter 3 delves deeper into this phenomenon, temporal

misalignment, for a variety of downstream tasks and domains. Given the rise of pretrained language models,

which also empowered SCIGEN, we focused on whether or not modern NLP models could generalize well
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temporally. We found that these models could degrade severely due to temporal misalignment, but the degree

of deterioration depends greatly on the task definition and domain. Even two tasks in the same domain could

be affected by temporal misalignment very differently.

Chapter 4 shows that incorporating temporal characteristics of a community in modeling can be useful

to study persuasion. We aimed to estimate user persuasive skill for members of an online debate website,

debate.org. To do so, we cast the problem as a forecasting problem where we predict the outcome of a debate

based only on the previous debates and not the content of the current one at hand. We build on the Elo method

by augmenting it with a linguistic profile, features based on a user’s past debates. Our results indicate that a

model combining our linguistic profile with Elo outperforms Elo by itself and even approaches an oracle

model. Finally, we track the feature use of the best and worst users and find that the top users over time. We

find that the best users improve while the worst users stagnate or get worse.

We have established in this thesis the utility of modeling natural language interactions to uncover social

phenomena and knowledge of social interactions to motivate new NLP tasks. Throughout the thesis, we have

emphasized the importance of recognizing nuances in the community, tasks, and domains studied, especially

with respect to time. Each task studied in this work had unique characteristics that we took advantage of.

In light of the strength of recent NLP models empowered by pretrained language models, we encourage

practitioners to consider their final applications carefully and pay attention to unique characteristics in their

data.
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